Medical Infobahn for Europe
Proceedings of MIE2000 and GMDS2000

Editors: A. Hasman
 B. Blobel
 J. Dudeck
 R. Engelbrecht
 G. Gell
 H.-U. Prokosch
Studies in Health Technology and Informatics

Editors
Jens Pihljaer Christensen, European Commission, Luxembourg; Arie Hasman, EFMI, Maastricht; Ilias Iakovidis, European Commission, Brussels; Zoi Kolitsi, University of Patras; Olivier Le Dour, European Commission DG Research, Brussels; Antonio Pedotti, Politecnico di Milan; Assa Reichert, EFMI, Tel Aviv; Otto Rienhoff, Georg-August-Universität Göttingen; Francis H. Roger France, Centre for Medical Informatics, UCL, Brussels; Niels Rossing, National University Hospital, Copenhagen; Faina Shtern, National Institutes of Health, Bethesda, MD

Volume 77

Earlier published in this series

Vol. 48. J. Graefmans, V. Taipale and N. Charness (Eds.), Gerontechnology
Vol. 49. L. van den Broek and A.J. Sikkel (Eds.), Health Cards '97
Vol. 50. J.D. Westwood, H.M. Hoffman, D. Stredney and S.J. Weghorst (Eds.), Medicine Meets Virtual Reality
Vol. 51. J. Mantas (Ed.), Advances in Health Telematics Education
Vol. 52. B. Cesnik, A.T. McCray and J.-R. Scherrer (Eds.), MedInfo '98
Vol. 54. O. Ferrer-Roca and M. Sosa-Ludicissa (Eds.), Handbook of Telemedicine
Vol. 56. I. Iakovidis, S. Maglaveras and A. Trakatellis (Eds.), User Acceptance of Health Telematics Applications
Vol. 57. J. Mantas (Ed.), Health and Medical Informatics Education in Europe
Vol. 58. G. Riva, B.K. Wiederhold and E. Molinari (Eds.), Virtual Environments in Clinical Psychology and Neuroscience
Vol. 59. I.A.F. Stokes (Ed.), Research into Spinal Deformities 2
Vol. 60. M. Di Rienzo, G. Mancia, G. Parati, A. Pedotti and A. Zanchetti (Eds.), Methodology and Clinical Applications of Blood Pressure and Heart Rate Analysis
Vol. 61. R.A. Mortensen (Ed.), ICNPIA and Telematic Applications for Nurses in Europe
Vol. 62. J.D. Westwood, H.M. Hoffman, R.A. Robb and D. Stredney (Eds.), Medicine Meets Virtual Reality
Vol. 63. R. Rogers and J. Reardon, Recommendations for International Action
Vol. 64. M. Nerlich and R. Kretschmer (Eds.), The Impact of Telemedicine on Health Care Management
Vol. 65. In production
Vol. 66. In production
Vol. 67. J. Oates and H. Bjerregaard Jensen (Eds.), Building Regional Health Care Networks in Europe
Vol. 68. P. Kokol, B. Zupan, J. Stare, M. Premik and R. Engelbrecht (Eds.), Medical Informatics Europe '99
Vol. 69. In production
Vol. 70. J.D. Westwood, H.M. Hoffman, G.T. Mogel, R.A. Robb and D. Stredney (Eds.), Medicine Meets Virtual Reality 2000
Vol. 71. J.T. Ottesen and M. Danielsen (Eds.), Mathematical Modelling in Medicine
Vol. 72. I. Iakovidis, S. Maglaveras and A. Trakatellis (Eds.), User Acceptance of Health Telematics Applications
Vol. 73. In production
Vol. 75. G.O. Klein (Ed.), Case Studies of Security Problems and their Solutions
Vol. 76. E.A. Balas, S.A. Boren and G.D. Brown (Eds.), Information Technology Strategies from the United States and the European Union

ISSN: 0926-9630
Medical Infobahn for Europe
Proceedings of MIE2000 and GMDS2000

Edited by

Arie Hasman
Department of Medical Informatics, University of Maastricht,
The Netherlands

Bernd Blobel
Medizinische Fakultät, Otto-von-Guericke-Universität, Magdeburg, Germany

Joachim Dudeck
Institut für Medizinische Informatik, Justus-Liebig-Universität,
Gießen, Germany

Rolf Engelbrecht
MEDIS–Institut für Medizinische Informatik und Systemforschung, GSF–
Forschungszentrum für Umwelt und Gesundheit, Neuherberg, Germany

Günther Gell
Institut für Medizinische Informatik, Statistik und Dokumentation,
Universität Graz, Austria

Hans-Ulrich Prokosh
Institut für Medizinische Informatik und Biomathematik,
Westfälische Wilhelms-Universität, Münster, Germany

IOS Press
Amsterdam • Berlin • Oxford • Tokyo • Washington, DC
Contents

Preface

Evidence-Based Medicine & Meta-Analysis

- MedView-Design and Adoption of an Interactive System for Oral Medicine,
 3
- Information Visualisation in Clinical Medicine Using 3D Parallel Diagrams: A Case
 History, G. Falkman, M. Jontell and N. Nazari
 8
- Clinical Workstations Supporting Evidence-Based Medicine, S. Graeber and D. Geiß
 14
- Do Children with Hodgkin's Disease Have a Better Prognosis than Adults?
 Application of a Generalised Linear Model to a Systematic Review of Published
 Results, J. Franklin
 18
- Systems of Evidence-Based Healthcare and Personalised Health Information: Some
 International and National Trends, C. Gordon, J.A. Muir Gray, B. Toth
 and M. Veloso
 23
- Improving the Calculation of Confidence Intervals for the Number Needed to Treat,
 R. Bender
 29
- Danger of Misuse of Meta-Analyses for Observational Studies Based on Published
 Data, W. Sauerbrei and M. Blettner
 33
- Combined Test Procedures in the Meta-Analysis of Controlled Clinical Trials,
 G. Knapp and J. Hartung
 34
- Meta-Analysis: Different Methods — Different Conclusions?, A. Böckenhoff
 and J. Hartung
 39

Modelling and Simulation

- Simulation to Estimate the Capacity of a Stroke Unit, M. Heinrichs, R. Beekman
 and M. Limburg
 47
- Modelling Health Care Processes for Eliciting User Requirements: A Way to Link
 a Quality Paradigm and Clinical Information System Design, P. Staccini,
 M. Joubert, J.-F. Quaranta, D. Fieschi and M. Fieschi
 51
- Analysis and Modeling of the Treatment Process Characterizing the Cooperation
 within Multi-Professional Treatment Teams, E. Ammenwerth, F. Ehlers,
 R. Eichstädt, R. Haux, B. Kruppa, P. Parzer, U. Pohl and F. Resch
 57
- Building a Web-Based Drug Ordering System for Hospitals: from Requirements
 Engineering to Prototyping, U. Hübner, F. Klein, J. Hofstetter, G. Kammeyer
 and H. Seete
 62
- From Primary Edges to Contours: Modelling Contour Integration in Human Early
 Vision, D. Lunguianu, V. Cotirlea and L. Hanga
 68
- Diskussion einer aktuellen Publikation zur Wirkung von Knoblauch auf Athero-
 sklerose, T. Friede and G. Nehmiz
 73
- Modellwahl bei longitudinalen Daten — am Beispiel einer Studie zur Langzeit-
 wirkung von Knoblauch auf Fettablagerungen in Arterien, E. Schuster
 77
Epidemiological Methods

Eignen sich Daten über Arzneimittelverordnungen für das Erkennen arbeitsbedingter Gesundheitsgefahren?, W. Bödeker, A. Ochsmann, S. Bieniek, M. Friedrichs and R. Hanßen

A Simulation Approach to Study Planning for Large-Scale Epidemiological Surveys, D. Alte, C. Adam, J. Lüdemann and U. John

Epidemiologische Methodik einer Versorgungsanalyse von chronischen Schmerz-patienten, B.Th. Baune

Application of Artificial Neural Network for the Identification of Fresh Water Bacteria, M. Giacomini, C. Ruggiero, F. Caneva and S. Bertone

Epidemiologie und Ökonomie von Helicobacter pylori Infektionen, D. Schröder-Bernhardt, E. Perez and G. Dietlein

Das Entropie-Konzept als Möglichkeit zur Gewinnung von Masszahlen für Nominalskalierte Daten in der Gesundheitsberichterstattung, C.M. Erben

Epidemiological Surveillance and Health Reporting

Moderne Surveillance von Infektionskrankheiten — Notwendige Strukturen und Elemente für ein effektives Überwachungssystem, D. Litz, R. Reintjes, L. Wille and A. Krämer

Start der Gesundheitsberichterstattung des Bundes am Robert Koch-Institut, T. Ziese

Empirische Bayesschätzer im Disease Mapping, D. Böhning

Diagnostic, Therapeutic and Economic Value of Intravascular Ultrasound (IVUS) Imaging in Patients with Coronary Artery Disease and in Patients after Heart Transplantation, V. Klauss, U. Siebert, J. Peeters, E. Regar, J. Rieber, P. Afdelsberger, M. Corzillius, N. Mühlerberger and J. Wasem

Regionalanalyse prognotistischer Krebserkrankungszahlen in Niedersachsen, J. Kieschke, M. Rohde and I. Wallmann

Gesundheits-Surveillance im ÖGD NRW mit Geoinformationssystemen, W. Hellmeier, A. Queste and R. Fehr

Über das retrospektive Erkennen von Problempatienten, F. Kretzschmar
Epidemiological Methods / Epidemiological Surveillance and Health Reporting

- Romanian Perspective on Health Reporting, I.-O. Ciubota, L. Botezat and C. Botezat
- Cartographic Mapping of Health Data, G. Greiner, G. Kundt and L. Gierl
- ICD-10-SGBV and ICD-10-Diagnosenthesaurus — Advantages and Disadvantages as well as Further Development, B. Graubner
- Typing of Diseases in the Hungarian Minimal Basic Data Set for Hospital Treatment Episodes, G. Surján and G. Héja
- Epidemiology of Football Injuries — Influence of Definition and Data Collection on the Incidence of Injuries, A. Junge and J. Dworak

Diagnostic and Prognostic Studies

- Bidirectional Classification Procedures: Double Tree and Double Cluster, H. Hecker
- Intellectual Systems for Differential Diagnostics within Groups of Hardly Distinguished Diseases, O.Y. Mayorov and M.D. Katz
- Application of Kohonen Neural Network for the Elaboration of Electrogastrograms, M. Giaconini, C. Ruggiero and C. Mansi
- Vergleichende Beurteilung des Balanceverhaltens verschiedener Randomisierungsverfahren für den unstratifizierten Fall, G. Kundt
- Normal Ranges of Neuropsychological Tests for the Diagnosis of Alzheimer’s Disease, M. Berres, A.U. Monsch, F. Bernasconi, B. Thalmann and H.B. Stähelin

Design and Application of Evaluation, Validation and Assessment

- User Requirements in a System Development & Evaluation Context, J. Brender and P. McNaicker
- Evaluation of DICE, a Terminological System for Intensive Care, N.F. de Keizer, A. Abu-Hanna and R. Cornet
- Lack of Adequate Medical Involvement in Patient Centred Information Technology, P. Colreavy
- Utilisation of Computerised Clinical Guidance in General Practice Consultations, R.G. Wilson, I.N. Purves and D. Smith
- Integrating Users’ Activity Analysis in the Design and Assessment of Medical Software Applications: The Example of Anesthesia, M.C. Beuscart-Zéphir, F. Anceaux and J.M. Renard
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of the Computer-Based Dispatching System for Emergency Medical Dispatch, A. Ripanu and M. Oprisan</td>
<td>244</td>
</tr>
<tr>
<td>Teaching Computer Classes at the University Hospital of Münster — Evaluation of Long-Term Results, U. Veltmann, U. Eschmann and H.U. Prokosch</td>
<td>251</td>
</tr>
<tr>
<td>Organizational Issues</td>
<td></td>
</tr>
<tr>
<td>Technological Changes in the Healthcare Sector. A Method to Assess Change Readiness, M. Kristensen and C. Nøhr</td>
<td>259</td>
</tr>
<tr>
<td>Technology Development and Implementation in the Public Health Institutions: A Strategic and Pedagogical Task for the Learning Organization, H.S. Wentzer</td>
<td>264</td>
</tr>
<tr>
<td>Information on the Internet</td>
<td></td>
</tr>
<tr>
<td>HONselect: A Multilingual and Intelligent Search Tool Integrating Heterogeneous Web Resources, C. Boyer, V. Baujard, V. Griesser and J.R. Scherrer</td>
<td>273</td>
</tr>
<tr>
<td>EU-Project medCERTAIN: Certification and Rating of Trustworthy and Assessed Health Information on the Net, G. Eysenbach, T. Diepgen, K. Lampe and D. Brickley</td>
<td>279</td>
</tr>
<tr>
<td>Quality Assurance of Medical Information on the Internet, K. Adelhard</td>
<td>284</td>
</tr>
<tr>
<td>TEAC-Health — Research-Based Recommendations for European Certification of Health Telematics Services, J. Forsström and M. Rigby</td>
<td>288</td>
</tr>
<tr>
<td>Workflow</td>
<td></td>
</tr>
<tr>
<td>Towards a New Dimension in Clinical Information Processing, P. Dadam and M. Reichert</td>
<td>295</td>
</tr>
<tr>
<td>Issues of Trial Design</td>
<td></td>
</tr>
<tr>
<td>Verblindete Fallzahlanpassung in Äquivalenzstudien, T. Friede and M. Kieser</td>
<td>309</td>
</tr>
<tr>
<td>A New Class of Self-Designing Clinical Trials, J. Hartung</td>
<td>310</td>
</tr>
<tr>
<td>Stabile multivariate Tests aus der Sicht der zugehörigen Konfidenzbereiche, S. Kropf and J. Läuter</td>
<td>315</td>
</tr>
<tr>
<td>A New Approach to Adjust for Multivariate Confounders in Small Randomized Studies Applied to Dendritic Cell Vaccination Data, K.M. Wittkowsky</td>
<td>321</td>
</tr>
<tr>
<td>The Impact of the Internet on Clinical Trials</td>
<td></td>
</tr>
<tr>
<td>Telecare of Diabetic Patients with Intensified Insulin Therapy, A Randomized Clinical Trial, E. Biermann, W. Dietrich and E. Standl</td>
<td>327</td>
</tr>
<tr>
<td>Clinical Trial Management and Remote Data Entry on the Internet Based on XML Case Report Forms, P. Wübbelt, G. Fernandez and J. Heymer</td>
<td>333</td>
</tr>
</tbody>
</table>
A New Generation of Remote Data Entry: Using WAP-Phones in Clinical Trials, C. Eikemeier, R. Grütter and K. Heitmann 338
Akzeptanz und Zukunft des Internets für klinischen Studien in Deutschland — Ergebnisse einer Umfrage, W. Kuchinke, H.-P. Eich and C. Ohmann 343
Internetbasierte Anwendungsbeobachtung in gastroenterologischen Schwerpunktprazken — Aspekte der Qualitätsskontrolle —, C. Ose, H. Hirche, K.-H. Jöckel, B. Küppers, L. Warth and B. Rammler 348

Quality
Using ICD-10 for Case Groups, J. Stausberg, A. Zaiß, J. Fuchs and A. Berke 359
Informationsergänzung aus einer Tumordatenbank zu einem PDMS — Möglichkeiten und Grenzen —, T. Fahrbusch, U.A. Gansert and P. Brenk 364
Individualisierung der Therapie am Beispiel der Antibiotikadosierung, D. Steffen and L. Gierl 369
RESIS-3D — ein Krankenhaus-Geoinformationssystem zur Ausbreitung überwachung für resistente Erreger, D. Ihracky, D. Steffen and L. Gierl 374
Qualitätssicherung durch evidenz-basierte Evaluation von Behandlungsverläufen (am Beispiel der Zahnmedizin), M. Kus, W. Walther and M.B. Wischnewsky 379
Quality Assurance Issues Concerning Healthcare Information Systems Project Development, M. Bazavan and R. Dimitriu 383
Application of Genetic Programming for the Differential Diagnosis of Acid — Base and Anion Gap Disorders, A. Malolepszy, E. Kacki and T. Dogdanik 388

Quality and Cost Evaluation
A Loss-Effectiveness Analysis of Risk-Adapted Surveillance after Colorectal Polypectomy, U. Mansmann 395
Can Factors Influencing In-Patient Treatment in Hodgkin’s Disease Be Identified? — Retrospective Analysis of HD6 patients of the GHSG, B. Pfistner, U. Paulus, J.P. Glossmann, R. Walshe, H. Tesch and V. Diehl 399

Modelling of Heterogeneity
Heritability of Death from Respiratory Diseases: An Analysis of Danish Twin Survival Data Using a Correlated Frailty Model, A. Wienke, K. Christensen, N.V. Holm and A.I. Yashin 407
Multivariate Frailty Model with a Major Gene: Application to Genealogical Data, A. Begun, B. Desjardins, I. Iachine and A. Yashin 412
Mixture Models and Modelling Heterogeneity of the Regional Distribution of Avoidable Death in Germany 1995, P. Schlattman 417
Use of Linear Mixed Models to Detect Irregular Fetal Growth, J. König, C. Bruss and H.-J. Hendrik 423
Natural Language Processing

Suregen2: A Model-Based Generator for Surgical Reports, D. Kraus 429
CIM Explorer — Intelligent Tool for Exploring the ICD Romanian Version,
F. Filip and C. Haras 433
Semantic Analysis of Medical Free Texts, M. Romacker, U. Hahn, S. Schulz
and R. Klar 438
Identifying Proper Names in Parallel Medical Terminologies, O. Bodenreider
and P. Zweigenbaum 443
Tagging Medical Texts: A Rule-Based Experiment, P. Ruch, P. Bouillon, G. Robert,
R. Baud and A.-M. Rassinoux 448
A Toolset for Medical Text Processing, R.H. Baud, C. Lovis, P. Ruch
and A.-M. Rassinoux 456

Mixed Topics of Medical Informatics

Agent-Oriented Captology for Medical Informatics, B.E. Bärbat, C.B. Zamfirescu
and G. Costache 465
WaX: A Personal Healthcare Knowledge Management System for Professionals,
T. Benson 470
Neural Network Prediction of Polyproline Type II Secondary Structures, M. Siemula
and M. Juhola 475
Structured Clinical Documentation for the Assessment of Medical Care, S. Hölzer,
W. Wächter, U. Altman, R. Schweiger and J. Dudeck 480
Availability and Accuracy of Electronic Patient Data for Medical Practice Assessment,
H. Prins, F.H. Kruisinga, H.A. Bailer and J.H.M. Zwetsloot-Schonk 484
The Impact of Electronic Health Information and Computer-Mediated
Communication for the Coping Abilities of Cancer Patients, A. Scheiber
and M. Gründel 489
Entwicklung eines Lehr- und Lernsystems für Neurochirurgie, P.P. Bastani,
N. Osada, I. Schwerung, N. Meier, H. Wassmann and W. Köpcke 490
A Flexible Architecture for Constructing and Executing Tutoring Processes,
A. Martens, J. Bernauer, T. Illmann, C. Scheuerer and A. Seitz 494
Practical Aspects to Realize Data Transfer between a Patient Administration
Mastersystem and Clinical Subsystems Using ProtoGen/HL7, B. Jung,
A. Goldschmidt and S. Langenberg 499
Anbindung eines Anästhesie-Informations-Management-Systems an das Patienten-
Daten-Management-System einer Intensivstation, C. Fuchs, M. Benson, A. Michel,
A. Junger, D. Brammen, K. Marquardt and G. Hempelmann 504
Möglichkeiten der Telemedizin in Anästhesie und Intensivmedizin, L. Quinzio,
A. Junger, C. Fuchs, G. Sciuk, T. Meier, A. Michel and G. Hempelmann 509
Anwenderzufriedenheit von Patienten-Daten-Management-Systemen (PDMS) in der
Intensivmedizin, A. Junger, M. Benson, L. Quinzio, C. Fuchs, A. Michel,
K. Marquardt and G. Hempelmann 513
Systematische Evaluierung der Anwenderzufriedenheit von Ärzten mit einem
Krankenhausinformationssystem — Erste Ergebnisse, O. Boy, C. Ohmann,
B. Aust, H.P. Eich, M. Koller, O. Knoller and U. Nolte 518
Computer Based Training / Education in Medical Informatics

Medical Informatics Education for “Allied” Profiles, G.J. Mihalas, D. Lungeanu, C. Vernic, A. Kigyosi and M. Petrescu

DiasNet — an Internet Tool for Communication and Education in Diabetes, O.K. Heijesen, S. Plougmann and D.A. Cavan

AUDIX: A Knowledge-Based System for Speech-Therapeutic Auditory Discrimination Exercises, B. Grawemeyer, R. Cox and C. Lumn

Virtual Training Simulator — Designer of EEG Signals for Tutoring Students and Doctors to Methods of Quantitative EEG Analysis (qEEG), O.Y. Mayorov

Web-Based Multimedia Courseware for Emergency Cardiac Patient Management Simulations, V. Ambrosiadou, T. Compton, T. Panchal and S. Polovina

Integrated Internet Based Tools for Learning and Evaluating the International Classification of Nursing Practice, C.-S. Alecu, E. Jitaru and I. Moisil

WWW-Based Continuing Medical Education: How Do General Practitioners Use it?, C. Dickmann, E. Habermeyer and K. Spitzer

Electronic Patient Record

Identification in Healthcare. Is There a Place for Unique Patient Identifiers? Is There a Place for the Master Patient Index?, G. Freriks

How Can Electronic Patient Records Help Innovate Health Care?, P. Elberg

A Secure Web-Based Medical Digital Library Architecture Based on TTPs, I. Papadakis, V. Chrissikopoulos and D. Poleni

The Electronic Medical Record: Using Documents for Information Capture, F. Lafont and A. Flory

An Object-Oriented Approach for Structuring the Electronic Medical Record, F. Banhart and R. Lohmann
The Danish EPR Observatory. Assessing Organisational Impact from EPR Implementation, M. Kristensen, C. Nohr and S.K. Andersen 627

Long Term Preservation of Electronic Health Records – Recommendations in a Large Teaching Hospital in Belgium, F.H. Roger France, Cl. Beguin, R. van Breugel and Cl. Piret 632

Issues in Designing a Controlled Vocabulary and a Patient Data Representation Model for a Hospital-Wide EPR System, C. Breant and F. Borst 637

Archiving of Care Related Information in XML-format, T. Olhede and H.E. Peterson 642

Sharing Medication Data Using the InterCare Architecture, H. Lodder, L. Wolf and J. Vernee 647

Czech National Data Standards Implementations in ORCA Electronic Patient Record in Cardiology, V. Příbík, H. Grünfeldová, P. Hanzlíček, J. Peleška and J. Zvárová 652

The Black Sea Tele-Diab System: Development-Implementation-Clinical Evaluation, S. Pruna, M. Georgescu, E. Stanciu, R.M. Dixon and N.D. Harris 656

Patient Empowerment

A Personalised Healthcare Information Delivery System: Pushing Customised Healthcare Information over the WWW, S.S.R. Abidi and A. Goh 663

Differences in Demographic Data Regarding Physicians and Patients in the US or Abroad Using a Medically Oriented Internet Information Service, G. Quade, S. Zenker, B. Burde, R.-R. Riedel and A. Goldschmidt 668

A MeSH Based Intelligent Search Intermediary for Consumer Health Information Systems, G. Göbel, J. Masser and K.P. Pfeiffer 673

A Caching Approach for XML Based Medical Data, A.I. Vakali and A.S. Pombortsis 678

Terminology

MUSTANG: Wiederverwendbare UMLS-basierte terminologische Dienste, J. Ingenierf and J. Reiner 685

Can We Classify Medical Data Dictionaries?, T. Bürkle 691

Knowledge Engineering the UMLS, S. Schulz, M. Romacker and U. Hahn 701

Knowledge-Based Methods for Medical Decision Making

Transforming XML-Based Electronic Patient Records for Use in Medical Case Based Reasoning Systems, S.S.R. Abidi and S. Manickam 709

Case-Based Reasoning for Medical Knowledge-Based Systems, R. Schmidt and L. Gierl 720

Statistical Methods for Medical Decision Making

Nearest Neighbour Classification with Heterogeneous Proximity Functions, J. Laurikkala and M. Juhola

A Model for Optimal Sequential Decisions Applied to Liver Transplantation, G. Tusch

Optimal Risk Assessment for Estimating the VSD in Experiment Carcinogenesis, C.P. Kitos and A. Limakopoulou

Dimension Reduction for Highdimensional Online-Monitoring Data in Intensive Care, M. Bauer, R. Fried and U. Gather

Methodological Aspects of Data Warehouses and Data Mining

A Data Mining Approach to the Development of a Diagnostic Test for Male Infertility, S. Dzeroski, D. Hristovski, T. Kunej and B. Peterlin

Data Warehouse and Data Mining in a Surgical Clinic, G. Tusch, M. Müller, K. Rohwer-Menschling, K. Heiringhoff and J. Klemptnauer

Data Mining and Structuring of Executable Data Analysis Reports: Guideline Development and Implementation in a Narrow Sense, J. Karlsson and P. Eklund

Implementation and Deployment of Healthcare Management Information System, I. Zellic, B. Bercic, M. Pikec and S. Slavec

Integration of Information Systems and Decision Support Functions

Conceptual Integration of Guidelines and Workflow into the Electronic Health Record, G. Schadow, D.C. Russler and C.J. McDonald

Decision Support for Infectious Diseases — A Working Prototype, J. Joch, T. Bürkle and J. Dudeck

Integrating Knowledge Based Functionality in Commercial Hospital Information Systems, M.L. Müller, T. Ganslandt, H.P. Eich, K. Lang, C. Ohmann and H.U. Prokosch

XML Structured Clinical Information: A Practical Example, R. Schweiger, T. Bürkle, S. Höltzer and J. Dudeck
Healthcare Knowledge Acquisition: An Ontology-Based Approach Using the Extensible Markup Language (XML), C. Yu-N and S.S.R. Abidi

Conception of an XML-Based Ontology for a Web-Based Medical Information Service, R. Grütter, C. Eikemeier, W. Fierz and J. Steurer

Health Expert’s Tacit Knowledge Acquisition and Representation Using Specialised Healthcare Scenarios, C. Yu-N and S.S.R. Abidi

Redundant Thyroid Laboratory Diagnostic Modules in Laboratory Information System — A Way to Improve the Performance, Z. Sonicki, A. Morin, T. Plasaj, D. Sonicki and Z. Kusić

Graphical Tool for Navigation within the Semantic Network of the UMLS Metathesaurus on a Locally Installed Database, T. Frankewitsch and H.U. Prokosch

Knowledge Acquisition, Management and Representation for the Diagnostic Support in Human Inborn Errors of Metabolism, R. Hofestädte, U. Mischke and U. Scholz

Hospital Information Systems

Prototype of a JAVA/DICOM Image Server with Integrated Findings and Data Security, J. Bernarding, A. Thiel, I. Decker, A. Grzesik, K.-J. Wolf and T. Tolxdorff

Planning and Introduction of Clinical Documentation in a University Hospital, V. Callegari and K.P. Pfeiffer

Finding similar cases within a Hospital Information System, F. Borst, G. Thurler, C. Breant, B. Lehner-Godinho, A. Calmy and C. Meter

Purpose and Structure of Strategic Plans for Information Management in Hospitals, B. Brigl, A. Buchauer, C. Dujat, S. Gräber, W. Hasselbring, R. Haux, A. Heinrich, H. Janssen, I. Kock and A. Winter

Strategic Information Management for a Dutch University Hospital, W. Hasselbring, R. Peterson, M. Smits and R. Spanjers

Integrating Specialized Application Systems into Hospital Information Systems — Obstacles and Factors for Success, P. Knaup, V. Mlodek, T. Wiedemann, J. Bauer, R. Haux, L. Kim, F. Schilling and B. Selle

The Development of a New Information Model for a Pediatric Cancer Registry on Late Treatment Sequelae in the Netherlands, M.W.M. Jaspers, H. Caron, H. Behrendt, C. van den Bos, P. Bakker and F. Van Leeuwen

Lessons learned from a Hospital Intranet Project, Ø. Helland and K. Øyri

Recommendations on the Design of Hospital Intranets, F. Leiner, J. Verhey and O. Rienhoff

Calming Admins and Managers — Experiences from Four Years Using Thin Client Technology in a Hospital Environment, K.U. Heimann, A. Koop, T. Morzinck and W. Schneichel

Implementing an ICU-CIS integrated to a HIS in Latin America, A. Espinosa

Design Principles of a Clinical Information System for Intensive Care Units (ICUData), A. Michel, M. Benson, A. Junger, G. Sciuk, G. Hempelmann, J. Dudeck and K. Marquardt

Comparison of manual and automated documentation of adverse events with an Anesthesia Information Management System (AIMS), M. Benson, A. Junger, A. Michel, G. Sciuk, L. Quinzio, K. Marquardt and G. Hempelmann

Das klinische Arbeitsplatzsystem als zentrale Komponente eines Klinikanformationssystem, L. Trautmann, A. Scherer, D. Geiß and S. Gräber

Entwicklung einer integrierten Stationskommunikation im Umfeld des KIS des Universitätsklinikums Freiburg, M. Busch, M. Sauer, R. Marx, S. Bucher, A.W. Zaisser and R. Klar

Das DRG-System stellt neue Dokumentationsanforderungen an die Krankenhäuser, C. Kolodzig and R.G. Thurmayr

Telematics in Health Care

Development of an Oncology Data Network in Germany, U. Altmann, J. Dudeck, B. Eisinger, H. Kunath, G. Schott, H. Kurbjahn, W. Wächter, A.G. Tafazzoli and F.R. Katz

A Core Middleware Service in H.I.S.: The Experience of IC_PIDRM, V. Verderio and P. Cooper

An ICT Solution for Community Mental Health — Putting Virtuality into the Vision, R. Draper and M. Rigby

Dissemination of the Use of the Electronic Patient Record in High-Quality Workmanship: The Regional IT Consultant for Primary Care Doctors, K. Demkjær, T. Lehrmann and T. Bové

Distributed Information System Architecture for Primary Health Care, M. Grammatikou, F. Stamateloopoulos and B. Maglaris

MedIDok — An Intranet Tool for XML-based Data Modelling in Medicine, M. Dugas and K. Überla

A Regional Health Network Supported by Organisational Change. Cross Sectorial Electronic Referral and Confirmation of Booking, T. Kaae

Hospital Information Systems / Telematics

Extended Applications with Smart Cards for Integration of Health Care and Health Insurance Services, M. Sucholotiuc, L. Stefan, I. Dobre and M. Teseleanu

The Card Integrated into the Slovene Health Care Information System, M. Sušelj

AX.25 Amateur Packet Radio as a Possible Emergency Network, M. Petrescu and V. Toth
Introduction of a Clinical Information System in a Regional General State Hospital of Athens, Greece, J. Sarivouyioukas and A. Vagelatos

Telematics / Communication

Relevance of Mandates, Notifications and Threads in the Management of Continuity of Care, F. Consorti, C. Lalle, F.L. Ricci and A. Rossi-Mori

The Communicative Function of Clinical Narrative in Radiology Reporting, J. Rooksby and S. Kay

An XML-Java System for HL7-Based Healthcare Informatics, A. Goh, Y.L. Kum, S.Y. Mak and Y.T. Quek

Security

Secure Interoperability of Patient Data Cards in Health Networks, B. Blobel, V. Spiegel, P. Pharow, K. Engel and R. Engelbrecht

Cryptographic Framework for Document-Objects Resulting from Multiparty Collaborative Transactions, A. Goh

Role-Based Access to Patients Clinical Data: The InterCare Approach in the Region of Crete, G. Potamias, M. Tsiknakis, D. Katehakis, E. Karabela, V. Moustakis and S. Orphanoudakis

Rollenbasiertes Konzept für den Zugriff auf Patientendaten im Mainzer Uniklinikum, M. Sergl

Ein Public-Key-System mit einem einzigen Schlüsselpaar für Patientenkarten, H. Farroukh

Eine Public-Key-Infrastruktur für Demonstratoren der Health Professional Card, P. Pharow and B. Blobel

Telemedicine

MedStage — Platform for Information and Communication in Healthcare, H. Schüll and V. Schmidt

Physicians’ Attitudes towards Health Telematics — An Empirical Survey, B. Langer and T. Wetter

Telemedicine: Application of Telepathology-Remote Microscopy for Intraoperative Diagnoses on Frozen Sections, A. Battmann, R. Knitz, S. Janzen, F. Fiedler, B. Stock, A. Schulz and B. Knoblauch

TelFam: A Telemedicine System for the Family Doctor Practices, M. Kurzynski, E. Puchala and M. Woźniak

DICOM Extensions for Narrow-Band Networks, J. Riesmeier, M. Eichelberg, D. Lemoine, V. Purys, N. Balogh and P. Jensch

The Croatian Telemedicine, L. Kovačić, S. Lončarić, J. Paladino and J. Kern

Implementation of a Dedicated Optical Fibre Network for Real Time Stereo Imaging, P.S. Chios and A.C. Tan

European Projects in Radiological Data Bases for Telemedicine and Teaching, F.M. Drudi, G. Salcito, F. Trippa, A. Righi, F. Cascone and R. Passariello

Robotics

ROBO-SIM: A Simulator for Minimally Invasive Neurosurgery Using an Active Manipulator, A. Radetzky, M. Rudolph, S. Starkie, B. Davies and L.M. Auer

3-D Visualization of the Newborn’s Hip Joint Using Ultrasound and Automatic Image Segmentation, U. von Jan, H.M. Overhoff and D. Lazovic

Pilot Study of Total Knee Arthroplasty Planning by Use of 3-D Ultrasound Image Volumes, C. Machter, M. Liebing, D. Lazovic and H.M. Overhoff

3D-Computer animations in Cardiac Surgery, P. Engels, M. Preisack, M. Schefer, R. Friedl, O. Gödje and A. Hannekum

Web-Based Virtual Endoscopy, S. Loncaric and T. Markovinovic

Image and Signal Processing

3-D Image Analysis of Abdominal Aortic Aneurysm, M. Subasic, S. Loncaric and E. Sorantin

New DICOM Extensions for Softcopy and Hardcopy Display Consistency, M. Eichelberg, J. Riesmeier, K. Kleber, D.H.W. Grönemeyer, H. Oosterwijk and P. Jensch

A Neural Network Activex Based Integrated Image Processing Environment, I. Ciucu, E. Jitaru, M. Alăcescu and I. Moisil

‘LipTelephone’ A Videophone for the Deaf, N. Sarris, D. Simitipoulos and M.G. Strintzis
Artificial Neural Networks for Classifying Olfactory Signals, R. Linder and S.J. Pöppl

Analysis of Periapical Lesion Using Statistical Textural Features, B. Caputo and G.E. Gigante

Deformable Boundary Detection of Stents in Angiographic Images, I. Kompatsiaris, D. Tzovaras, V. Koutkias, P. Dafas and M.G. Strintzis

Lossless Compression of Emission Tomography Images, J. Mykkänen, T. Tossavainen and M. Juhola

Medical Image Compression by Cosine and Wavelet Transforms, J. Puniene, V. Punys and J. Punys

Lossy Compression of Auditory Brainstem Response Signals, T. Tossavainen, M. Juhola and T. Grönfors

Heart Rate Variability during Sleep Stages in Normals and in Patients with Sleep Apnea, T. Penzel, A. Bunde, L. Grote, J.W. Kantelhardt, J.-H. Peter and K. Voigt

Author Index
Intellectual Systems for Differential Diagnostics within Groups of hardly distinguished Diseases

Oleg Yu. MAYOROV¹,²,³, Mark D. KATZ³,
¹Kharkiv Medical Academy of Postgraduate Education, ²Ukrainian Institute of Public Health, ³Ukrainian Association of Computer Medicine. P.O. BOX 7313, Kharkiv 61002, Ukraine; e-mail: uacm@kharkov.com

Abstract. A new method of mathematical modeling based on ideas of the artificial intelligence has been developed called as a method of a «mosaic portrait». A description of a universal computer system «Differentiated diagnostics» is given into which it is possible to introduce the «mosaic model» for any group of diseases which are difficult to distinguish. On its base a number of diagnostic medical intellectual systems have been developed.

1. Introduction

The diagnostics was, is and will be the most important problem in medicine and diagnostics accuracy, achieved in certain historical periods, points mainly to the level of medicine science.

In view of the complexity of a human organism which is characterised by practically infinite number of diseases development, significant impact of a patient’s individual peculiarities on development of symptoms and on the treatment of a diseases, a medical diagnostics now is not only so much a science as an art of few highly qualified professionals.

In literature there are available many works where some attempts have been undertaken to formalise the process of diagnostics using mathematical models [1-3]. The results of these works, in physicians’ opinion, did not justify hopes. Rare achievements were related to relative simplicity of the problem (in these works there were differentiated such disease which were quite far from each other in the space of symptoms) or with its inadequate simplification (as a result of this there appeared at best models which can «identify a disease not worse than an average physician»).

The theoretical analysis of the results of works on mathematical modelling of «large systems» conducted in the theory of complexity showed that when solving problems with the number of entering parameters (symptoms) more than 7 for digital method and more that 15 for discrete methods practically invincible methodical and calculation difficulties occur (a medical diagnostic system also refer to «large systems») [1-3].

2. Method

The discrepancy between possibilities of the known methods of mathematical modelling and the difficulties of real medical diagnostic problems resulted in the necessity of the search for alternative ways of diagnostics formalisation.

One of such being under intensive development in recent time is the development of expert medical systems.

As it is known an expert system - it is a computing system in which the formalised knowledge of specialists in certain specific branch is included. The expert system within the sphere allows to solve problems in the same way as it could be done by a man-expert [1-3].
The efficiency of work of the expert system depends in first extent on the quantity and quality of the information being included into the knowledge base. This is directly a weak point of expert systems. Firstly - a knowledge base is being constructed on the grounds of subjective judgements of examiners whose knowledge are limited. Secondly - specialists cannot formalise this knowledge in the form of rules. Moreover, in general examiners do not report which rules exactly they follow [1-3].

It should be also noted that psychophysiological abilities of a man allows him/her to distinguish dependencies of this or that event intuitively no more that on 2 variables (e.g. differential syndromes of a disease including at least 2 variables). To distinguish dependencies in the interaction of 3 variables - this is a fortune of a genius.

On the grounds of the objective analysis of the efficiency of various medical expert systems we drew the following conclusions:

- when solving relatively simple problems of differential diagnostics (those problems which are easily solved by specialists using nonformalisation approaches) the accuracy of a diagnosis achieved with the help of expert systems and expert will be close and sufficient;
- when solving the most important and complicated problems of differential diagnostics (differentiation of disease which are close by manifestations, prediction of the character of a disease development, etc.) the diagnostics accuracy achieved with the help of expert systems and expert will be close and significantly insufficient.

![Diagram](image)

Fig 1 Matching properties of expert and intellectual medical systems.

Thus, it is necessary to transform the medical diagnostics from intuitive art of a few talented professionals into a strict science with high level of formalisation. The considerable progress in this direction can be achieved in the case if the problem of formal construction (without examiners) of adequate mathematical models for differential diagnostics within the group of diseases, which are close in their manifestations, could be solved.

3. Results

In order to solve this problem a new method of mathematical modelling has been developed basing on the ideas of artificial intellect which was named a method of «mosaic portrait» [4-8].

The problem of differential diagnosis model construction can be mathematically formulated as follows:

Given: Table of experimental data \(M = X \times Y \) (\(X = \{X_{ij}\}, i=1,m, j=1,n; \; Y = \{Y_{il}\}, l=1,k \)), each line of the table contains information about symptoms values (\(X_{ij} \)) and verified diagnosis \(Y_{il} \) for the i-th patient. (Here \(m \) is a number of lines (patients) in table \(M \), \(n \) is a number of columns (symptoms) in table \(M \), \(k \) is a number of diseases to be differentiated.)
Required: to construct, based on table M and using formalised procedures, a mathematical model consisting of K disjunctions of differential syndromes each disjunction containing differential syndromes of only one of K diseases to be differentiated.

Thus, the method of mosaic portrait allows to construct a mathematical model by using a table of experimental material and verified diagnosis in one patient with the help of formalised procedures (without specialists). This model contains the corresponding subset of differentiated syndromes for each of N differentiated diseases. Each line of the table contains information on the meaning of the parameters (the data of: history of a diseases, treatment, instrumental and clinical researches, etc.).

The essence of the method of mosaic portrait is in the following:
1. To differentiate the range of possible meanings of each of the parameters into subranges giving each subrange a corresponding code;
2. To distinguish the combination of codes of different parameters which occurred in-patient with the same disease and not occurred in any other patient with other diseases.

In the mosaic model the subranges of possible meanings of each of the parameters are interpreted as symptoms and the combination of symptoms which occur in patients with the same disease (e.g., A) and do not occur in any other patient with other diseases (B, C, ...N) as differentiated symptoms of the disease A.

As far as in the method of the mosaic portrait there are no limitations to the scope of the task (quantity of parameters used for diagnostics) and to the scope of the syndrome (quantity of entering symptoms) a model received with its help contains a large number of new, nontrivial symptoms which were unknown earlier.

When developing a model of differentiated diagnostics the parameters can be used which traditionally are not used for solving this problem. The formalised procedure for the assessment of the informativity of each of the parameters in relation to each of the differentiated disease is laid in the algorithm of the construction of the mosaic model. Using this procedure it is possible to withdraw the variables which are not significant for solving specific problems.

Let us take an example. When constructing a model of differentiated diagnostics «gastric ulcer - gastric cancer» the table included 12 parameters in addition to traditional parameters which were never used earlier for solving this problem. It turned out that 11 of them are less informative and the 12th - electric cardiac position is a significant symptom and it was included in many differentiated syndromes of gastric ulcer. Another example: a patient has a combination of symptoms - weakening of pains after induced vomiting, duration of a disease for more than a year, electrical cardiac position is semivertical, the content of neutrophiles 6%, the content of lymphocytes 24% - so the diagnosis is a gastric ulcer. Under the other combination of symptoms a diagnosis - gastric cancer can be made (lack of appetite, electrical cardiac position is uncertain, content of albumines 51,2% of the total protein quantity).

The particular feature (advantage) of the mosaic model is a possibility to limit the number of diagnostic tests (because of their high cost, difficulty in access or hard endurance by a patient). This can be achieved because mosaic models exhibit a high descriptiveness. For each of the differentiated diseases a large number of syndromes can be distinguished which contain different combinations of symptoms. So, it is possible to introduce any limitations to the use of diagnostic tests (parameters). But an effective mosaic model can be constructed in any way. For example, it is possible to use mostly parameters of any group of the given subsets (anamnesis and electrocardiography). It is possible to exclude invasive tests (gastroscopy with the aimed biopsy, liver puncture, spinal puncture, etc.) as well as to exclude expensive tests.

We consider the method of mosaic portrait as the base of intellectual medical system, generating new systemic knowledge by means of formalised procedures (differentiated syndromes which were unknown before) from the table of the initial experimental material.
Using this knowledge it is possible to make a formal (computer) diagnostics within a group of the differentiated diseases.

After elaborating and patenting the intellectual system of the differentiated diagnostics for a specific group of diseases will represent a final product (as a set of computer programs) suitable for sales.

Practically all expert systems known today and intellectual systems generating knowledge by means of the method of the «mosaic portrait» use one and the same language of logic algebra in which any hypothesis is formulated as an expression «if... then...». In addition, expert systems accumulate (or should do that) all available knowledge in this subject. So, a statement is true that when there are available examination and intellectual systems constructed for one and the same subject area their crossing (common hypotheses) represent a priori known trivial information. The logic difference between expressions of expert and intellectual systems will be a false information (disinformation). The logic difference between expressions of intellectual and expert systems represent a new, nontrivial information unknown to specialists of this subject area.

That is why intellectual medical systems can take a place of expert systems in the market of intellectual medical products.

A universal computer system «Differentiated diagnostics» has been developed into which it is possible to introduce the «mosaic model» for any group of difficulty-distinguished diseases. On its basis a number of diagnostic medical intellectual systems have been developed.

Among them there is a computer system «Prediction of myocardium infarction complications in an acute period» for which a mathematical model was developed as a result of a collaborative work with the Military Medical Academy (St. Petersburg, Russia) [4, 5]. The following functions can be examined with this system:

- to predict probable complications of myocardium infarction (cardiogenic shock, cardiomyopathy, ventricle fibrillation, insufficient blood circulation, without complications);
- to evaluate the probability of manifestations of each of the predicted complication;
- to propose recommendations on preventive therapy of the predicted complication (complications) and corresponding symptomatic treatment with account of compatibility of drugs and treatment procedures;
- to put out the information about differentiated syndromes basing on which a diagnosis has been made.

All initial information on the state of health of a patient including the data of the anamnesis, results of examination, electrocardiography (39 parameters in total) put out from the keyboard by clicking one key as responses to questions appeared on the screen.

The experimental checking of the efficiency of this system has been conducted on the base of the cardiological clinic of the Medical Military Academy, 20th and 42nd city hospitals (St. Petersburg, Russia), 23rd Moscow clinical hospital (Moscow, Russia). It is established that the accuracy in prediction of complications makes up 85-88%. Owing to the purposeful preventive therapy of prognosticated complications the lethality from large focal myocardium infarction succeeded to be decreased by 36% and from small focal one - by 45%. The comparison was performed on the computer prediction received on the basis of the data about a patient collected at the first day of his/her stay in the hospital fixed by the delayed effects. It was found that in 90% cases a formal prediction of the future complication coincided with the final diagnosis (the data of the Institute of Therapy of the Academy of Medical Sciences of Ukraine (Kharkiv, Ukraine).

In collaboration with the Medical Military Academy a non-invasive express method of differentiated diagnostics has been developed - « Gastric ulcer - gastric cancer» (without using gastroscopy with the aimed biopsy). The experimental checking of efficiency of the use of a syndrome mathematical model for diagnostics conducted in a group of 120 new patients showed that for 117 of them (96,4%) the computer diagnosis coincided with the final one.
On the base of the Burn Center (Kharkiv, Ukraine) a computer system has been elaborated - «Differentiated diagnostics of various pathogens of pneumonia in burned persons» (xa shocked lung, aspiration atelectatic, toxico-septic, hypostatic and bronchogenic pneumonia). The system allows to make an earlier diagnostics (on the 1st day of a disease development), to significantly differentiate methods of treatment and to raise its efficiency [6, 7].

4. Conclusions

A method of «mosaic portrait» allows: - to strictly formalize and automize a medical diagnostics; - to carry out an effective earlier noninvasive diagnostics (including that in latent periods) of chronic diseases which are dangerous for life (e.g. cancer diseases); - to predict courses and complications of diseases according to the information received on the first days of its manifestation; - to decrease loads on the patient by full exclusion of invasive tests in diagnostics; - to cut down the expenses for diagnostics by excluding tests that give insufficient information and are expensive; - to conduct a correct formal screening in mass preventive examination of the population.

5. Summary

The problem of formal (without participation of examiners) development of adequate mathematical models has been solved for differentiated diagnostics within groups of diseases, which are close in their manifestations.

References